Design Data for Alloy 740H High Temperature Concentrating Solar Power Components

B. Barua, M. C. Messner, R. E. Bass, M. D. McMurtrey

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recently, Barua et. al [ANL-20/03, 2020] developed new design rules for high temperature concentrating solar power metallic components. These rules are to be used in conjunction with the Section III, Division 5 rules of the ASME Boiler & Pressure Vessel Code and include three design by analysis options - i) design by elastic analysis with reduced margin, ii) design by elastic analysis with reduced margin and simplified creep-fatigue evaluation, and iii) design by inelastic analysis. In this paper, we report the corresponding design data for a nickel-based high temperature alloy - Alloy 740H. The current Alloy 740H Code Case includes some basic material properties such as Young's modulus, Poisson's ratio, thermal properties, yield strength, tensile strength, and allowable stress So. However, a complete design check for high temperature components - i.e., primary load and buckling checks, ratcheting strain limits, and creep-fatigue evaluation - requires additional material data including allowable stress Sm, relaxation strength, isochronous stress-strain curves, minimum-stress-to-rupture Sr, fatigue diagrams, and creep-fatigue damage envelope. We construct these design data from the available material data in the literature and data generated recently at Idaho National Laboratory as part of a U.S. Department of Energy - Solar Energy Technology Office funded project. We also develop an inelastic constitutive model for use with the design by inelastic analysis method.

Original languageEnglish
Title of host publicationAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791887486
ISBN (Print)9780791887486
DOIs
StatePublished - 2023
EventASME 2023 Pressure Vessels and Piping Conference, PVP 2023 - Atlanta, United States
Duration: Jul 16 2023Jul 21 2023

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume5
ISSN (Print)0277-027X

Conference

ConferenceASME 2023 Pressure Vessels and Piping Conference, PVP 2023
Country/TerritoryUnited States
CityAtlanta
Period07/16/2307/21/23

Fingerprint

Dive into the research topics of 'Design Data for Alloy 740H High Temperature Concentrating Solar Power Components'. Together they form a unique fingerprint.

Cite this