TY - JOUR
T1 - The effect of birthrate granularity on the release-to-birth ratio for the AGR-1 in-core experiment
AU - Scates, D. M.
AU - Walter, J. B.
AU - Maki, J. T.
AU - Sterbentz, J. W.
AU - Parry, J. R.
PY - 2014/5
Y1 - 2014/5
N2 - The AGR-1 Advanced Gas Reactor (AGR) tristructural-isotropic-particle fuel experiment underwent 13 irradiation intervals from December 2006 until November 2009 within the Idaho National Laboratory Advanced Test Reactor in support of the Next Generation Nuclear Power Plant program. During this multi-year experiment, release-to-birth rate ratios were computed at the end of each operating interval to provide information about fuel performance. Fission products released during irradiation were tracked daily by the Fission Product Monitoring System using 8-h measurements. Birth rate calculated by MCNP with ORIGEN for as-run conditions were computed at the end of each irradiation interval. Each time step in MCNP provided neutron flux, reaction rates and AGR-1 compact composition, which were used to determine birth rate using ORIGEN. The initial birth-rate data, consisting of four values for each irradiation interval at the beginning, end, and two intermediate times, were interpolated to obtain values for each 8-h activity. The problem with this method is that any daily changes in heat rates or perturbations, such as shim control movement or core/lobe power fluctuations, would not be reflected in the interpolated data and a true picture of the system would not be presented. At the conclusion of the AGR-1 experiment, great efforts were put forth to compute daily birthrates, which were reprocessed with the 8-h release activity. The results of this study are presented in this paper.
AB - The AGR-1 Advanced Gas Reactor (AGR) tristructural-isotropic-particle fuel experiment underwent 13 irradiation intervals from December 2006 until November 2009 within the Idaho National Laboratory Advanced Test Reactor in support of the Next Generation Nuclear Power Plant program. During this multi-year experiment, release-to-birth rate ratios were computed at the end of each operating interval to provide information about fuel performance. Fission products released during irradiation were tracked daily by the Fission Product Monitoring System using 8-h measurements. Birth rate calculated by MCNP with ORIGEN for as-run conditions were computed at the end of each irradiation interval. Each time step in MCNP provided neutron flux, reaction rates and AGR-1 compact composition, which were used to determine birth rate using ORIGEN. The initial birth-rate data, consisting of four values for each irradiation interval at the beginning, end, and two intermediate times, were interpolated to obtain values for each 8-h activity. The problem with this method is that any daily changes in heat rates or perturbations, such as shim control movement or core/lobe power fluctuations, would not be reflected in the interpolated data and a true picture of the system would not be presented. At the conclusion of the AGR-1 experiment, great efforts were put forth to compute daily birthrates, which were reprocessed with the 8-h release activity. The results of this study are presented in this paper.
UR - http://www.scopus.com/inward/record.url?scp=84899409892&partnerID=8YFLogxK
U2 - 10.1016/j.nucengdes.2013.11.037
DO - 10.1016/j.nucengdes.2013.11.037
M3 - Article
AN - SCOPUS:84899409892
SN - 0029-5493
VL - 271
SP - 231
EP - 237
JO - Nuclear Engineering and Design
JF - Nuclear Engineering and Design
ER -