Abstract
A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature.
Original language | English |
---|---|
Pages | 1495-1498 |
Number of pages | 4 |
State | Published - 2013 |
Event | International Nuclear Fuel Cycle Conference: Nuclear Energy at a Crossroads, GLOBAL 2013 - Salt Lake City, UT, United States Duration: Sep 29 2013 → Oct 3 2013 |
Conference
Conference | International Nuclear Fuel Cycle Conference: Nuclear Energy at a Crossroads, GLOBAL 2013 |
---|---|
Country/Territory | United States |
City | Salt Lake City, UT |
Period | 09/29/13 → 10/3/13 |