Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using bison

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The behavior of nuclear fuel in the reactor environment is affected by multiple physics, most notably heat conduction and solid mechanics, which can have a strong influence on each other. To provide credible solutions, a fuel performance simulation code must have the ability to obtain solutions for each of the physics, including coupling between them. Solution strategies for solving systems of coupled equations can be categorized as loosely-coupled, where the individual physics are solved separately, keeping the solutions for the other physics fixed at each iteration, or tightly coupled, where the nonlinear solver simultaneously drives down the residual for each physics, taking into account the coupling between the physics in each nonlinear iteration. In this paper, we compare the performance of loosely and tightly coupled solution algorithms for thermomechanical problems involving coupled thermal and mechanical contact, which is a primary source of interdependence between thermal and mechanical solutions in fuel performance models. The results indicate that loosely-coupled simulations require significantly more nonlinear iterations, and may lead to convergence trouble when the thermal conductivity of the gap is too small. We also apply the tightly coupled solution strategy to a nuclear fuel simulation of an experiment in a test reactor. Studying the results from these simulations indicates that perhaps convergence for either approach may be problem dependent, i.e., there may be problems for which a loose coupled approach converges, where tightly coupled won't converge and vice versa.

Original languageEnglish
Title of host publicationInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Pages1285-1296
Number of pages12
StatePublished - 2013
EventInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013 - Sun Valley, ID, United States
Duration: May 5 2013May 9 2013

Publication series

NameInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Volume2

Conference

ConferenceInternational Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2013
Country/TerritoryUnited States
CitySun Valley, ID
Period05/5/1305/9/13

Keywords

  • Coupled multiphysics
  • Fuel performance

Fingerprint

Dive into the research topics of 'Results from tight and loose coupled multiphysics in nuclear fuels performance simulations using bison'. Together they form a unique fingerprint.

Cite this