Novel accident-tolerant fuel meat and cladding

Robert D. Mariani, Pavel Medvedev, Douglas L. Porter, Steven L. Hayes, James I. Cole, Xian Ming Bai

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

A novel accident-tolerant fuel meat and cladding are here proposed. The fuel meat design incorporates annular fuel with inserts and discs that are fabricated from a material having high thermal conductivity, for example niobium. The inserts are rods or tubes. Discs separate the fuel pellets. Using the BISON fuel performance code it was found that the peak fuel temperature can be lowered by more than 600 °C for one set of conditions with niobium metal as the thermal conductor. In addition to improved safety margin, several advantages are expected from the lower temperature such as decreased fission gas release and fuel cracking. Advantages and disadvantages are discussed. An enrichment of only 7.5% fully compensates the lost reactivity of the displaced UO2. Slightly higher enrichments, such as 9%, allow uprates and increased burnups to offset the initial costs for retooling. The design has applications for fast reactors and transuranic burning, which may accelerate its development. A zirconium silicide coating is also described for accident tolerant applications. A self-limiting degradation behavior for this coating is expected to produce a glassy, self-healing layer that becomes more protective at elevated temperature, with some similarities to MoSi2 and other silicides. Both the fuel and coating may benefit from the existing technology infrastructure and the associated wide expertise for a more rapid development in comparison to other, more novel fuels and cladding.

Original languageEnglish
Title of host publicationLWR Fuel Performance Meeting, Top Fuel 2013
PublisherAmerican Nuclear Society
Pages763-770
Number of pages8
ISBN (Print)9781629937212
StatePublished - 2013
EventLWR Fuel Performance Meeting, Top Fuel 2013 - Charlotte, NC, United States
Duration: Sep 15 2013Sep 19 2013

Publication series

NameLWR Fuel Performance Meeting, Top Fuel 2013
Volume2

Conference

ConferenceLWR Fuel Performance Meeting, Top Fuel 2013
Country/TerritoryUnited States
CityCharlotte, NC
Period09/15/1309/19/13

Fingerprint

Dive into the research topics of 'Novel accident-tolerant fuel meat and cladding'. Together they form a unique fingerprint.

Cite this