TY - JOUR
T1 - Mechanistic understanding of the fracture toughening in chemically strengthened glass—experiments and phase-field fracture modeling
AU - Egboiyi, Benedict
AU - Mattey, Revanth
AU - Konica, Shabnam
AU - Nikam, Parag
AU - Ghosh, Susanta
AU - Sain, Trisha
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The use of silicate glass in engineering applications has become widespread in recent years due to its superior mechanical and optical properties. However, glass, being a brittle material, poses extremely poor resistance against fracture. Chemical strengthening through ion-exchange has emerged as a promising technique to improve its fracture resistance. In this study, the relationships between chemical strengthening parameters and the resulting fracture toughness of chemically strengthened (CS) glass are investigated using experiments, analytical and numerical simulations. Our results show that optimal fracture resistance for a CS glass requires a proper combination of chemical strengthening parameters, namely the surface compressive stress (σCS), and depth of the compression layer (DOL). The present study establishes the fact that unlike glass, the fracture toughness (KICCS) of a CS glass is not a constant material parameter, instead depends on the initial crack/notch length. The experimental data have also been supported with analytical calculations based on linear elastic fracture mechanics and numerical simulations based on the phase-field fracture theory. These findings provide a novel understanding towards the fracture toughness improvement of CS glass, which should facilitate their widespread engineering applications.
AB - The use of silicate glass in engineering applications has become widespread in recent years due to its superior mechanical and optical properties. However, glass, being a brittle material, poses extremely poor resistance against fracture. Chemical strengthening through ion-exchange has emerged as a promising technique to improve its fracture resistance. In this study, the relationships between chemical strengthening parameters and the resulting fracture toughness of chemically strengthened (CS) glass are investigated using experiments, analytical and numerical simulations. Our results show that optimal fracture resistance for a CS glass requires a proper combination of chemical strengthening parameters, namely the surface compressive stress (σCS), and depth of the compression layer (DOL). The present study establishes the fact that unlike glass, the fracture toughness (KICCS) of a CS glass is not a constant material parameter, instead depends on the initial crack/notch length. The experimental data have also been supported with analytical calculations based on linear elastic fracture mechanics and numerical simulations based on the phase-field fracture theory. These findings provide a novel understanding towards the fracture toughness improvement of CS glass, which should facilitate their widespread engineering applications.
KW - Chemically strengthened glass
KW - Depth of layer
KW - Fracture toughness
KW - Ion exchange
KW - Phase-field fracture
KW - Residual stress
UR - http://www.scopus.com/inward/record.url?scp=85120920352&partnerID=8YFLogxK
U2 - 10.1016/j.ijsolstr.2021.111374
DO - 10.1016/j.ijsolstr.2021.111374
M3 - Article
AN - SCOPUS:85120920352
SN - 0020-7683
VL - 238
JO - International Journal of Solids and Structures
JF - International Journal of Solids and Structures
M1 - 111374
ER -