Finite element simulation of anisotropic damage around pressurized boreholes in prefractured shale

W. Jin, H. Xu, C. Arson

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Optimizing hydraulic fracture injection parameters in order to maximize hydrocarbon extraction and to avoid extensive borehole spalling is still an open issue. In this paper, the Differential Stress Induced Damage (DSID) model is employed to simulate the anisotropic damage distribution around pressurized boreholes drilled in fractured shale. The loading path is purely mechanical: excavation and fluid injection are simulated by stress relaxation followed by pressurization. We investigate the effect of pre-existing fracture orientation, in-situ stress and injection pressure on the propagation of anisotropic damage during pressurization. Finite Element results indicate that (1) damage initiates and develops when the ratio of two in-situ stress component deviates from 1, and the magnitude of damage is proportional to this stress deviation; (2) For a given in-situ stress field, damage initiates for a certain threshold of injection pressure, and the damage zone extends as the injection pressure increases; (3) A pre-existing fracture only affects the damage zone locally; the orientation of that fracture does not affect the damaged zone, which is controlled by in situ stress and injection pressure.

Original languageEnglish
Title of host publication13th ISRM International Congress of Rock Mechanics
Editors Hassani, Hadjigeorgiou, Archibald
PublisherInternational Society for Rock Mechanics
ISBN (Electronic)9781926872254
StatePublished - 2015
Externally publishedYes
Event13th ISRM International Congress of Rock Mechanics 2015 - Montreal, Canada
Duration: May 10 2015May 13 2015

Publication series

Name13th ISRM International Congress of Rock Mechanics
Volume2015- MAY

Conference

Conference13th ISRM International Congress of Rock Mechanics 2015
Country/TerritoryCanada
CityMontreal
Period05/10/1505/13/15

Keywords

  • Anisotropic damage
  • Fracture orientation
  • Hydraulic pressure
  • In-situ stress

Fingerprint

Dive into the research topics of 'Finite element simulation of anisotropic damage around pressurized boreholes in prefractured shale'. Together they form a unique fingerprint.

Cite this