TY - JOUR
T1 - Development of the Versatile Test Reactor Probabilistic Risk Assessment
AU - Grabaskas, David
AU - Andrus, Jason
AU - Henneke, Dennis
AU - Li, Jonathan
AU - Bucknor, Matthew
AU - Warner, Matthew
N1 - Funding Information:
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan. The work reported in this summary is the result of ongoing efforts supporting the Versatile Test Reactor.
Funding Information:
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02- 06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan . The work reported in this summary is the result of ongoing efforts supporting the Versatile Test Reactor.
Publisher Copyright:
© 2022 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published with license by Taylor & Francis Group, LLC.
PY - 2022/3/4
Y1 - 2022/3/4
N2 - The Versatile Test Reactor (VTR) is a fast spectrum test reactor currently being developed in the United States under the direction of the U.S. Department of Energy (DOE), Office of Nuclear Energy (DOE-NE). The mission of the VTR is to enable accelerated testing of advanced reactor fuels and materials required for advanced reactor technologies. The conceptual design of the 300-MW(thermal), sodium-cooled, metallic-fueled, pool-type fast reactor has been led by U.S. national laboratories in collaboration with General Electric-Hitachi and Bechtel National Inc. To facilitate risk-informed design and authorization activities during the conceptual development phase, a conceptual design probabilistic risk assessment (PRA) was performed for the VTR. This paper provides an overview of the development of the VTR conceptual design PRA, including key DOE and industry standards and the PRA analysis approach and structure. In addition, the results of the VTR conceptual design PRA are provided, which include its use within authorization documentation and design decisions, along with important lessons learned during the process. The work reported in the paper is the result of studies supporting a VTR conceptual design, cost, and schedule estimate for DOE-NE to make a decision on procurement. As such, it is preliminary.
AB - The Versatile Test Reactor (VTR) is a fast spectrum test reactor currently being developed in the United States under the direction of the U.S. Department of Energy (DOE), Office of Nuclear Energy (DOE-NE). The mission of the VTR is to enable accelerated testing of advanced reactor fuels and materials required for advanced reactor technologies. The conceptual design of the 300-MW(thermal), sodium-cooled, metallic-fueled, pool-type fast reactor has been led by U.S. national laboratories in collaboration with General Electric-Hitachi and Bechtel National Inc. To facilitate risk-informed design and authorization activities during the conceptual development phase, a conceptual design probabilistic risk assessment (PRA) was performed for the VTR. This paper provides an overview of the development of the VTR conceptual design PRA, including key DOE and industry standards and the PRA analysis approach and structure. In addition, the results of the VTR conceptual design PRA are provided, which include its use within authorization documentation and design decisions, along with important lessons learned during the process. The work reported in the paper is the result of studies supporting a VTR conceptual design, cost, and schedule estimate for DOE-NE to make a decision on procurement. As such, it is preliminary.
KW - non–light water reactor
KW - Probabilistic risk assessment
KW - risk-informed
KW - sodium fast reactor
KW - Versatile Test Reactor
UR - http://www.scopus.com/inward/record.url?scp=85126063609&partnerID=8YFLogxK
U2 - 10.1080/00295639.2021.2014741
DO - 10.1080/00295639.2021.2014741
M3 - Article
AN - SCOPUS:85126063609
SN - 0029-5639
VL - 196
SP - 278
EP - 288
JO - Nuclear Science and Engineering
JF - Nuclear Science and Engineering
IS - sup1
ER -