Designing Nuclear Fuels with a Multi-Principal Element Alloying Approach

G. Beausoleil, J. Zillinger, L. Hawkins, T. Yao, A. G. Weiss, X. Pu, N. Jerred, D. Kaoumi

Research output: Contribution to journalArticlepeer-review

Abstract

Previous research has shown that multi-principal element alloys (MPEAs) using chromium, molybdenum, niobium, tantalum, titanium, vanadium, and zirconium can form stable body-centered-cubic (BCC) structures across a large temperature region (25°C to 1000°C). This is the same crystal structure as γ-uranium (U), which has shown desirable thermal and irradiation behavior in previous alloy fuel research. It is hypothesized then that the MPEA alloying approach can be used to produce a stable BCC uranium-bearing alloy and to retain its stability throughout anticipated operating regimes of power-producing reactors. Candidate elements were assessed using Monte Carlo N-Particle (MCNP) analysis to determine uranium densities necessary to make the alloy an economically viable fuel compared to conventional fuel forms. Following neutronic considerations, materials property databases and empirical predictors were used to determine the compositions with a high potential to form a BCC solid solution alloy. The final four alloys were MoNbTaU2, MoNbTiU2, NbTaTiU2, and NbTaVU2, which were cast using arc melting of raw elemental foils and chunks. Characterization of the fabricated alloys included scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. The results showed a two-phase system with a U-rich matrix phase surrounding the refractory precipitates. The U phase was found to contain varying concentrations of the alloying elements and was a BCC γ-U phase. These results warrant further research to identify ideal compositions for use as an advanced alloy fuel.

Original languageEnglish
Pages (from-to)511-531
Number of pages21
JournalNuclear Technology
Volume210
Issue number3
Early online dateSep 20 2023
DOIs
StatePublished - Sep 20 2023

Keywords

  • actinide alloys
  • Alloy fuel
  • fuel characterization
  • fuel fabrication
  • multi-principal element alloys

Fingerprint

Dive into the research topics of 'Designing Nuclear Fuels with a Multi-Principal Element Alloying Approach'. Together they form a unique fingerprint.

Cite this