TY - JOUR
T1 - Collophora aceris, a Novel Antimycotic Producing Endophyte Associated with Douglas Maple
AU - Xie, Jie
AU - Strobel, Gary A.
AU - Mends, Morgan T.
AU - Hilmer, Jonathan
AU - Nigg, Jared
AU - Geary, Brad
N1 - Funding Information:
The authors acknowledge the financial support of Special Research Foundation of Southwest University in China (XDJK2010C097) and Chinese Scholarship Council grant (2011699519) to Jie Xie. Help from Percy Nunez Vargas of Cusco Peru, in doing the Latin translation is greatly appreciated.
PY - 2013/11
Y1 - 2013/11
N2 - A novel endophyte designated Collophora aceris, was obtained from stem tissues of Douglas Maple (Acer glabrum var. douglasii) in a Pacific Northwest temperate rainforest. Colonies were slow growing, white, creamy, moist, and translucent to opaque on potato dextrose agar and other media with few aerial hyphae. It also produced solid, dark sclerotia (200-400 μm) on oatmeal agar and no evidence of pseudopycnidia as per other Collophora spp. Conidia were rod-like in the size ranging from 2.2-8.4 × 0.8-1.8 μm and produced holoblastically on conidiogenous cells by budding with no collarette at the budding site. Phylogenetic analyses, based on 18S rDNA sequence data, showed that C. aceris possessed 99 % similarity to other Collophora spp. However, ITS-5.8S rDNA sequence data indicated that the organism was potentially related to Allantophomopsis spp. Finally, combined morphological, physiological, and molecular genetics data indicated that this organism is most like Collophora spp. but it is distinctly unique when compared to all other fungi in this group. It is to be noted that this is the first report of any member of this genus existing as an endophyte. This fungus makes a wide spectrum antimycotic agent (Collophorin) with biological activity against such pathogenic fungi as Pythium ultimum, Phytophthora cinnamomi, Phytophthora palmivora, and Rhizoctonia solani. Collophorin was purified to homogeneity and shown to have a unique mass of 120.0639, an empirical formula of C8H8O1, and UV absorption bands at 260 and 378 nm. This work also indicates that C. aceris possesses the biological potential to provide protection of its host against an array of common plant pathogens.
AB - A novel endophyte designated Collophora aceris, was obtained from stem tissues of Douglas Maple (Acer glabrum var. douglasii) in a Pacific Northwest temperate rainforest. Colonies were slow growing, white, creamy, moist, and translucent to opaque on potato dextrose agar and other media with few aerial hyphae. It also produced solid, dark sclerotia (200-400 μm) on oatmeal agar and no evidence of pseudopycnidia as per other Collophora spp. Conidia were rod-like in the size ranging from 2.2-8.4 × 0.8-1.8 μm and produced holoblastically on conidiogenous cells by budding with no collarette at the budding site. Phylogenetic analyses, based on 18S rDNA sequence data, showed that C. aceris possessed 99 % similarity to other Collophora spp. However, ITS-5.8S rDNA sequence data indicated that the organism was potentially related to Allantophomopsis spp. Finally, combined morphological, physiological, and molecular genetics data indicated that this organism is most like Collophora spp. but it is distinctly unique when compared to all other fungi in this group. It is to be noted that this is the first report of any member of this genus existing as an endophyte. This fungus makes a wide spectrum antimycotic agent (Collophorin) with biological activity against such pathogenic fungi as Pythium ultimum, Phytophthora cinnamomi, Phytophthora palmivora, and Rhizoctonia solani. Collophorin was purified to homogeneity and shown to have a unique mass of 120.0639, an empirical formula of C8H8O1, and UV absorption bands at 260 and 378 nm. This work also indicates that C. aceris possesses the biological potential to provide protection of its host against an array of common plant pathogens.
UR - http://www.scopus.com/inward/record.url?scp=84885898945&partnerID=8YFLogxK
U2 - 10.1007/s00248-013-0281-5
DO - 10.1007/s00248-013-0281-5
M3 - Article
C2 - 23996143
AN - SCOPUS:84885898945
SN - 0095-3628
VL - 66
SP - 784
EP - 795
JO - Microbial Ecology
JF - Microbial Ecology
IS - 4
ER -