Coherent structures and correlation fields in the mixing transition of a turbulent round free jet

Benedikt Krohn, Sunming Qin, Victor Petrov, Annalisa Manera

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Turbulent free jets attracted the focus of many scientists within the past century regarding the understanding of mass- and momentum transport in the turbulent shear field, especially in the near-field and the self-similar region. Recent investigations attempt to understand the intermediate fields, called the mixing transition or 'the route to self-similarity'. An apparent gap is recognized in light of this mixing transition, with two main conjectures being put forth. Firstly the flow will always asymptotically reach a fully self-similar state if boundary conditions permit. The second proposes partial and local self-similarity within the mixing transition. We address the later with an experimental investigation of the intermediate field turbulence dynamics in a non-confined free jet with a nozzle diameter of 12.7 mm and an outer scale Reynolds number of 15,000. High speed Particle Image Velocimetry (PIV) is used to record the velocity fields with a final spatial resolution of 194×194 µm2. The analysis focuses on higher order moments and two-point correlations of velocity variances in space and time. We observed local self-similarity in the measured correlation fields. Coherent structures are present within the near-field where the turbulent energy spectrum cascades along a dissipative slope. Towards the transition region, the spectrum smoothly transforms to a viscous cascade, as it is commonly observed in the self-similar region.

Original languageEnglish
Title of host publicationFlow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fluid Dynamics of Wind Energy; Bubble, Droplet, and Aerosol Dynamics
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851555
DOIs
StatePublished - 2018
Externally publishedYes
EventASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018 - Montreal, Canada
Duration: Jul 15 2018Jul 20 2018

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1
ISSN (Print)0888-8116

Conference

ConferenceASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Country/TerritoryCanada
CityMontreal
Period07/15/1807/20/18

Fingerprint

Dive into the research topics of 'Coherent structures and correlation fields in the mixing transition of a turbulent round free jet'. Together they form a unique fingerprint.

Cite this