Chemical purification of molybdenum samples for the NEMO 3 experiment

R. Arnold, C. Augier, J. Baker, A. Barabash, O. Bing, D. Blum, V. Brudanin, A. J. Caffrey, J. E. Campagne, E. Caurier, D. Dassie, V. Egorov, K. Errahmane, T. Filipova, J. L. Guyonnet, F. Hubert, Ph Hubert, S. Jullian, O. Kochetov, I. KiselV. N. Kornoukhov, V. Kovalenko, V. F. Kuzichev, D. Lalanne, F. Laplanche, F. Leccia, I. Linck, C. Longuemare, Ch Marquet, F. Mauger, H. W. Nicholson, I. Nikolic-Audit, I. Pilugin, F. Piquemal, J. L. Reyss, C. L. Riddle, X. Sarazin, F. Scheibling, I. Stekl, J. Suhonen, C. S. Sutton, G. Szklarz, V. Timkin, V. Tretyak, V. Umatov, I. Vanyushin, V. Vorobel, Ts Vylov

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Most currently, viable double beta decay experiments require highly enriched isotopic sources. These sources must be extraordinarily free of radioactive contamination. The double beta decay experiment NEMO 3 will study 100Mo, for which physical and chemical purification techniques have been investigated. The success of the chemical purification process is discussed in the context of ultra-low background, high-purity germanium spectrometer measurements.

Original languageEnglish
Pages (from-to)93-100
Number of pages8
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume474
Issue number1
DOIs
StatePublished - Nov 21 2001

Keywords

  • Double beta decay
  • HPGe spectrometry
  • Molybdenum
  • NEMO 3

Fingerprint

Dive into the research topics of 'Chemical purification of molybdenum samples for the NEMO 3 experiment'. Together they form a unique fingerprint.

Cite this