TY - JOUR
T1 - A reconstructed discontinuous Galerkin method based on a Hierarchical WENO reconstruction for compressible flows on tetrahedral grids
AU - Luo, Hong
AU - Xia, Yidong
AU - Spiegel, Seth
AU - Nourgaliev, Robert
AU - Jiang, Zonglin
PY - 2013/3/1
Y1 - 2013/3/1
N2 - A reconstructed discontinuous Galerkin (RDG) method based on a hierarchical WENO reconstruction, termed HWENO (P1P2) in this paper, designed not only to enhance the accuracy of discontinuous Galerkin methods but also to ensure the nonlinear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this HWENO (P1P2) method, a quadratic polynomial solution (P2) is first reconstructed using a Hermite WENO reconstruction from the underlying linear polynomial (P1) discontinuous Galerkin solution to ensure the linear stability of the RDG method and to improve the efficiency of the underlying DG method. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG method. The developed HWENO (P1P2) method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, robustness, and non-oscillatory property. The numerical experiments indicate that the HWENO (P1P2) method is able to capture shock waves within one cell without any spurious oscillations, and achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method.
AB - A reconstructed discontinuous Galerkin (RDG) method based on a hierarchical WENO reconstruction, termed HWENO (P1P2) in this paper, designed not only to enhance the accuracy of discontinuous Galerkin methods but also to ensure the nonlinear stability of the RDG method, is presented for solving the compressible Euler equations on tetrahedral grids. In this HWENO (P1P2) method, a quadratic polynomial solution (P2) is first reconstructed using a Hermite WENO reconstruction from the underlying linear polynomial (P1) discontinuous Galerkin solution to ensure the linear stability of the RDG method and to improve the efficiency of the underlying DG method. By taking advantage of handily available and yet invaluable information, namely the derivatives in the DG formulation, the stencils used in the reconstruction involve only von Neumann neighborhood (adjacent face-neighboring cells) and thus are compact. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the nonlinear stability of the RDG method. The developed HWENO (P1P2) method is used to compute a variety of flow problems on tetrahedral meshes to demonstrate its accuracy, robustness, and non-oscillatory property. The numerical experiments indicate that the HWENO (P1P2) method is able to capture shock waves within one cell without any spurious oscillations, and achieve the designed third-order of accuracy: one order accuracy higher than the underlying DG method.
KW - Discontinuous Galerkin method
KW - Unstructured grids
KW - WENO reconstruction
UR - http://www.scopus.com/inward/record.url?scp=84872303639&partnerID=8YFLogxK
U2 - 10.1016/j.jcp.2012.11.026
DO - 10.1016/j.jcp.2012.11.026
M3 - Article
AN - SCOPUS:84872303639
SN - 0021-9991
VL - 236
SP - 477
EP - 492
JO - Journal of Computational Physics
JF - Journal of Computational Physics
IS - 1
ER -