TY - JOUR
T1 - A multiphysics model of the versatile test reactor based on the MOOSE framework
AU - Martin, Nicolas
AU - Stewart, Ryan
AU - Bays, Sam
N1 - Funding Information:
This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517.
Funding Information:
This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. This research made use of the resources of the High Performance Computing Center at Idaho National Laboratory, which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517.
Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/7
Y1 - 2022/7
N2 - The traditional modeling approach for sodium fast reactor cores relies on separate physics models, where the fuel performance, thermal–hydraulics, and neutronics calculations required to predict the core physics characteristics for nominal conditions are decoupled by relying on user-imposed boundary conditions. This paper aims at evaluating the impact of multiphysics simulations for predicting the core characteristics of the Versatile Test Reactor, which is being designed as a 300-MWt sodium-cooled fast reactor. The purpose of the Versatile Test Reactor is to accelerate the testing of advanced nuclear materials in the United States. The proposed multiphysics model relies on the Griffin reactor physics code, the SAM thermal–hydraulic system code, the BISON fuel performance code, as well as generic Multiphysics Object-Oriented Simulation Environment capabilities implemented in the open-source tensor mechanics module. For keff calculations, the introduction of a tight coupling between the neutronics, thermo-mechanical and thermal–hydraulics models induces a change of around 543 pcm in the eigenvalue, compared to the traditional standalone neutronics calculation where approximate temperature profiles are used. The multiphysics model is then employed for quantifying the impact of the thermal conductivity uncertainties on some of the key figures of merit, such as the fuel centerline temperature, assembly powers, and keff for nominal core conditions. As anticipated, uncertainties on fuel thermal conductivity mostly impact the fuel centerline temperature, and to a lesser extend the keff.
AB - The traditional modeling approach for sodium fast reactor cores relies on separate physics models, where the fuel performance, thermal–hydraulics, and neutronics calculations required to predict the core physics characteristics for nominal conditions are decoupled by relying on user-imposed boundary conditions. This paper aims at evaluating the impact of multiphysics simulations for predicting the core characteristics of the Versatile Test Reactor, which is being designed as a 300-MWt sodium-cooled fast reactor. The purpose of the Versatile Test Reactor is to accelerate the testing of advanced nuclear materials in the United States. The proposed multiphysics model relies on the Griffin reactor physics code, the SAM thermal–hydraulic system code, the BISON fuel performance code, as well as generic Multiphysics Object-Oriented Simulation Environment capabilities implemented in the open-source tensor mechanics module. For keff calculations, the introduction of a tight coupling between the neutronics, thermo-mechanical and thermal–hydraulics models induces a change of around 543 pcm in the eigenvalue, compared to the traditional standalone neutronics calculation where approximate temperature profiles are used. The multiphysics model is then employed for quantifying the impact of the thermal conductivity uncertainties on some of the key figures of merit, such as the fuel centerline temperature, assembly powers, and keff for nominal core conditions. As anticipated, uncertainties on fuel thermal conductivity mostly impact the fuel centerline temperature, and to a lesser extend the keff.
KW - Multiphysics Object-Oriented Simulation Environment (MOOSE)
KW - Reactivity feedback coefficients
KW - Serpent monte carlo code
KW - Sodium fast reactor (SFR)
KW - Uncertainty quantification
UR - http://www.scopus.com/inward/record.url?scp=85127047117&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/4cb794a6-3f80-3a85-af43-32de7437c4b1/
U2 - 10.1016/j.anucene.2022.109066
DO - 10.1016/j.anucene.2022.109066
M3 - Article
AN - SCOPUS:85127047117
SN - 0306-4549
VL - 172
JO - Annals of Nuclear Energy
JF - Annals of Nuclear Energy
M1 - 109066
ER -